A Next Generation High Resolution Adaptive Optics Fundus Imager

P Fournier¹, G R G Erry¹, L J Otten¹, A Larichev², N Irochnikov³
1 Kestrel Corporation, 3815 Osuna Rd NE, Albuquerque, New Mexico 87109, USA
2 ILIT – Technological Laser Research Center Russian Academy of Sciences
3 Physical Faculty, Moscow State University

28 August – 1 September, 2005
5th IWAOIM
Beijing, China
Introduction

- First instrument built under a NATO SfP program.
- This is the continuation under the auspices of NIH
- Redesigned instrument
- Same team from Russia and the US
High Resolution Retinal Imaging

- Increase the resolution of retinal imagers to detect pathologies and provide a diagnosis at an earlier stage
 - Vascular abnormalities
 - Drusen

- Provide a “familiar” image interpretation.
 - Not stray too much from the operation of a regular imager

- Package for ease of use and clinical installation
 - Self contained instrument
Adaptive Optics

- The resolution is limited to 20-30um due to aberrations in the eye.

- Diffraction limit is about 3um for an optical instrument with a pupil of about 6mm

- An order of magnitude improvement is available

- Eye Aberrations
 - Low order
 - Large amplitude
 - Slow temporal change
New Vs Old

• Better optical design and layout
• Mechanical integration
• Improvement of the AO close loop response
• Larger stroke mirror for increased dynamic range
• Onboard calibration source
• New user interface
System Integration
Old Optical Layout

- KFG Fundus Imager
- Deformable Mirror
- Shack-Hartmann Sensor
- Dithering Mirror
- Data Camera
- Laser
- Light Box
- Scene Camera
- Eye
New Optical Layout

- 4K x 4K CCD
- Fundus camera
- Laser Projector
- Shack-Hartmann Sensor
- Calibration Laser and Collimator
- DM
Image Uniformity and Filling
Bimorph Deformable Mirror

- Mirror Parameters
 - 40mm aperture
 - 18 actuators
 - 9µm defocus
• Mirror Parameters
 – 38mm aperture
 – Double stack
 – 20 actuators
 – 35µm defocus stroke
 – 25um astigmatism stroke
Clinical Environment

• Fundus photographer
 – Trained professional to interact with patient but with little experience of advanced optical system. They must concentrate on imaging the patient, not on operating the instrument

• Limited time
 – Patients are people and must be tended with care and timeliness. The instrument must be easy to set-up.

• Examination rooms
 – Small rooms with little space to move around
 – No space for extra equipment

• To meet the requirements, the alignment / set-up and the operation of the instrument must be simplified.
Previous Calibration Procedure
Onboard Calibration Laser
Ease of use
New User interface

- **Control panel**
 - Go-No-Go condition
 - Filter selection
 - Exposure control

- **Viewing panel**
 - Direct View of Data
 - Simple image manipulation
Testing Results

- Deformable mirror performance
- Spatial resolution
- Clinical Human Testing
DM Testing results

- Stroke measurement
 - Focus distance measurement
 - 35um focus
 - 25um astigmatism
 - 15% hysteresis
Spatial Resolution

- Resolution
 - Group 6-4, 6-5
 - 90 to 100 cycles/mm
 - 5um line-width
Human testing

• In collaboration with the Moscow Eye Institute
• 14 patients
• Clinical environment
• Performed by a resident doctor

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th># of subjects</th>
<th>Diagnosis</th>
<th># of subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normals (non-age matched)</td>
<td>3</td>
<td>Glaucoma (visual loss)</td>
<td>3</td>
</tr>
<tr>
<td>Diabetes, preproliferative</td>
<td>2</td>
<td>Diabetes, non-proliferative</td>
<td>2</td>
</tr>
<tr>
<td>ARMD (wet, CNV)</td>
<td>2</td>
<td>ARMD (dry, drusen)</td>
<td>2</td>
</tr>
</tbody>
</table>
Proliferative small vessel

10-15um
Disc Vascular Features

10-15um
Microaneurisms

- 90 um
- 50 um
- 20 um
- 90 um
Nerve Fiber Layer

1.5mm
Conclusion

- Instrument performs as designed
- Clinical deployment was a success
- Continue the evaluation at Kestrel
- Moving to Iowa University for larger studies
Acknowledgment

• NIH
• Russian Team
 – Andrey Larichev, Nikita Iroshnikov
 – Sergey Mitrakov
• Dr. Stephen Russell, Iowa University
• Sheila Nemeth, EoW