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Abstract

Small-scale phase inhomogeneities visualization methods based on phase knife filtering are considered. A new modification
of such a technique with controllable lower threshold frequency is suggested: when transversally displaced from the center of
the Fourier plane, the phase knife demonstrated some new features. Phase-to-intensity transfer function of the filtering system
for arbitrary depth of harmonical phase modulation is obtained analytically, numerically and experimentally. Possibility of
optical implementation of ‘‘exclusive or’’ (XOR) logical operation by means of 2D phase knife is shown.

1. Introduction

The problem of phase retrieval of a light wave passed
through an optically inhomogeneous medium as well
as the problem of diagnostics of phase distortions have
been the subject of extensive studies. Several a poste-
riori algorithms based on the analysis of the intensity
distribution of transformed input field (for example,
power spectrum i.e. the Fourier transform) were sug-
gested to solve these problems [1,2]. Another way is
to use a wavefront sensor (like a Shack Hartmann one)
typical to adaptive optics systems [ 3]. Usually systems
of this kind are able to operate only with phase distor-
tions whose spatial scale is not less than a/ 10, where a
is the working aperture. Recent achievements in appli-
cations of nonlinear optical systems with spatially dis-
tributed feedback are evidence of the possibility of a
high resolution (up to a/1000) wavefront correction
{4,5]. However, it is very important to find out an
optimal technique to generate a pattern of controlling
intensity (feedback error signal). Complex spatial fil-
tration techniques seem to be very promising for this
purpose, although their advantages become visible only
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when dealing with small-scale phase inhomogeneities.

Fundamental experiments of Zernike and Focault
prompted wide investigations with two spatial filters
named after them [6]. At the same time the method of
phase visualization by phase knife is much less devel-
oped [7]. Only a few particular cases have been exam-
ined, and their mathematical description is valid only
for phase modulation of small amplitude (much less
than unity). However, it was found that this method
and its modifications had some features suggesting
promising applications to the above-mentioned tasks.
Furthermore, the development of photo-lithographic
technique ensured a possibility to produce phase filters
of this type having sufficient quality. Using a modern
liquid crystal light valve (LCLV) [8] one becomes
able to generate a phase object of desired transversal
distribution and with a modulation depth of almost 27,
that significantly simplifies the experimental investi-
gation of the filters.

In this paper we present theoretical and experimental
methods for studying the filtering system phase-to-
amplitude transfer function, i.e. the law of transfor-
mation of sinusoidal phase modulation into an
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amplitude one. Knowing this law, one can develop a
mathematical model of the optical feedback system
with the investigated spatial filter being a controlling
intensity generator.

2. Optical scheme

A spatial filtration of patterns is among the well-
known methods of image processing. We consider here
a transformation of pure phase objects by means of the
optical scheme shown in Fig. 1a. The image recorded
on a film slide SI is illuminated by collimated light and
is projected on the photoconductor surface of the
LCLV. Ls is an incoherent light source, and Cd is an
optical condenser. According to the intensity distribu-
tion in the projected slide, the LCLV modulates the
transversal phase distribution of laser beam Lb being

reflected by its second (liquid crystal) surface. The
beam is previously expanded by means of a telescopic
system. The spatial filter Sf is placed in the Fourier-
plane of *‘4-F’” imaging system whose object plane is
a liquid crystal slice of LCLV, i.e. a phase representa-
tion of the slide SI. The filtered image is collected on
the screen Sc and digitized by means of an S-video
camera with a frame grabber in order to carry out sub-
sequent computations. This optical scheme may be also
considered as a phase-to-amplitude field transformer
being a part of a nonlinear optical system with spatially
distributed feedback [9].

We investigated the phase knife produced as a glass
plate with a step-like thickness modulation. It is shown
in Fig. 1b (sketch) and Fig. 1c (photo of the phase
knife we used, made by phase-contrast microscopy).
The filter consists of four quadrants, two of them (II
and IV) introducing an additional phase shift + o into

St

Fig. 1. Experimental setup: (a) optical scheme, (b) sketch of the spatial filter; dashed circles correspond to the Airy disc location in the case
of: 1 — 1D centered, 2 — 2D centered and 3 — displaced operating regimes, (c) phase-contrast microscope picture of the spatial filter.
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Fig. 2. Visualization of 2D rectangular phase grating by the centered 1D phase knife with vertical edge: (a, b) experimental photographs, (c,

d) numerical simulation.

the radiation passing through them. The step thickness
is adjusted to the wavelength of 0.514 um, our source
being an Ar* laser. The filter can be used in several
regimes, differing by the location of zero-order of the
input field spectrum respectively to its edges.

To begin with, we consider the simplest case — 1D
phase knife with only one ‘“working’’ border between
two quadrants. The corresponding location of Airy disc
within the filter surface is labeled as 1 in Fig. 1b. In
order to illustrate how the system works we choose as
a phase object the rectangular 2D grating of amplitude
7 (shown in Fig. 5a). Figs. 2a and 2c represent exper-
imental photo’s and results of numerical simulation of
intensity distribution within the screen Sc. The filter

edge is oriented vertically. The filtering system visu-
alizes a gradient region of the phase distribution, as it
is stated in [7]. However, if one of the orthogonal sub-
gratings is oriented parallel to the filter edge, its power
spectrum, widened by aperture influence, is divided in
half by the edge. It leads thus to suppression of this
sub-grating after the filtration. Then the output intensity
pattern becomes a great deal different (Figs. 2b and
2d). To prevent this effect the following condition must
be satisfied:

a>1/n, (1)

where « is the angle between a significant spectral
component k of input image and filter edge direction,



98 A.V. Larichev et al. / Optics Communications 121 (1995) 95-102

and n is the corresponding magnitude |#|, measured
in periods per aperture. This condition applies for each
« and follows just from geometry of the power spec-
trum within the Fourier plane. So every spectral com-
ponent satisfying (1) is treated by the filter the same
way. It allows to use 1D approach for all these har-
monics in spite of the variety of their orientation in
space.

3. The Hilbert transform carried out by phase
knife

To avoid indefiniteness connected with essential ani-
sotropy of the filter we examined in detail a quasi-1D
case, when the field complex amplitude was only a
function of transversal coordinate x. Suppose the knife
edge is oriented orthogonally to x axis, in that case the
filter performs the 1D Hilbert transform:

Ao (X) = FL{AW(3) ] = An(x) ®PY —
mX

1oy [ 4al®
T E—x

— o

£, (2)

where A, (x) and A, (x) are the complex amplitudes
of the light field within plane P™ (input) and P°** (out-
put) according to Fig. 1a; PV indicates the principal
value of the convolution integral.

Let us calculate the transfer function of the visual-
izing system, i.e. x’-spectral component amplitude of
output intensity I, as a function of an amplitude ¢, of
harmonical phase modulation of input field:

Ain(x) = exp(i(pin(-x) ]
=explicocos(kpx) ], (3)

input intensity is uniform and equal to unity. I, stays
for the leading term in the Fourier series representation
of I,,(x), i.e. it is not necessarily k' = .

Usually for the calculation of the intensity distribu-
tion within the filter output plane the scalar diffraction
theory is applied [10]. This analytical technique is
useful for controlling the large-scale phase fluctuations.
However, if the spatial period of the input phase grating
is less than a/1.22 (meaning that the diffraction spot
of the corresponding spectral component is not crossed

by the filter edge), then the Neumann series approach
becomes preferable.

In that case the procedure of analytical transfer func-
tion determination for the Fourier-optics systems is the
following [11]: the function A,,(x) must be repre-
sented in the Neumann series form, and then every
complex amplitude of its spectrum is multiplied by the
value of the complex transmission function of the spa-
tial filter corresponding to its frequency k. Taking into
account, for example, the first four terms of the Neu-
mann expansion one can get for output intensity:

Lo (%) = Iy — Pcos(20%) + ..., (4)

where uniform intensity and amplitude of doubled fre-
quency intensity modulation are:

fou=2(J3(co) +J3(co) +F5(co) +...} .
ER=2{F(co) + 21 (co)Ta(co) +...}, (5)

where J,, is the Bessel function of order n. Expressions
(4), (5) have a95% accuracy for ¢, <2, and if ¢y < 1
we obtain a well-known [7] formula:

2
Lo(x) = %(1 — cos(240x)) - (6)

More precise expression for transfer function (5) in
case of strong phase modulation may be derived by
taking into account more terms in the Neumann rep-
resentation of (3). In any case the output intensity
spatial spectrum does not include k,-frequency com-
ponent and its components are all multiples of 2.

With the aim of measuring the transfer function
experimentally we made a special slide with 1D sinu-
soidal modulation of opacity. This slide ensured a sinu-
soidal controlling light distribution for LCLV, and
phase modulation amplitude was varied according to
the intensity of the incoherent light source Ls. To cal-
culate the corresponding depth of phase modulation
arising in the liquid crystal slice (plane P™ in Fig. 1a)
we measured the sensitivity curve of LCLV by near-
field diffraction technique (phase visualization by
defocus) [6,12]. Such a method ensures the accuracy
of modulation amplitude experimental measurement of
about 0.05 rad. This value is mostly caused by LCLV
internal inhomogeneity and air blowing, that can not
be accounted adequately.

The working aperture was 1 cm and the investigated
sinusoidal grating had 10 periods per aperture. In order
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Fig. 3. Transfer function plots. For centered phase knife (x'=2x,):
1 — parabolic approximation (Eq. (6)); 2 — numerical simulation; 3
— Bessel approximation (Eq. (5)); also experimental data (circle
dots). For displaced phase knife (k' = k,): 4 — linear approximation
(Eq. (10)); 5 - exact expression (Eq. (9)); also experimental data
(square dots).

to prevent some boundary effects influence we meas-
ured the spectrum of output intensity only within a
central part of the beam (3-4 periods). The Hilbert
transform is very sensitive to every small tilt of the
beam caused by vibration or air blowing [13]. So we
used time-averaging to reduce these effects. Fig. 3 rep-
resents three transfer function curves (labeled as 1-3
respectively): approximate (Eq. (6)), ‘‘exact”
(numerically calculated) and approximate (Eq. (5))
plots of 2% as a function of ¢, compared with experi-
mental data (circle dots). With the LCLV we used we
can get the maximal nonlinear phase shift of about 27.
But for a transfer function measurements only a linear
part of LCLV sensitivity curve should be used. So we
limited the value of experimentally achieved phase
modulation to 1.5 rad which corresponded to a full
modulation depth around 7.

4. Transversally displaced phase knife

While operating with the experimental set-up we
found out that the output pattern is critically dependent
on accuracy of alignment of the filter edge at the center
of the Fourier-plane. Usually this feature is considered

as an interfering factor making optical implementation
of the Hilbert transform more complicated in mechan-
ical requirements. We investigated separately the case
of phase knife transversal displacement and looked for
essential properties of such a transform.

Suppose the spatial filter placed at such a position
within the Fourier-plane that 8 is a distance between its
edge and zero frequency spot center (area 3 in Fig. 1b).
It means that the edge position in spectral area is
n=k8/F, where k is the laser radiation wavenumber
and F is the lens focal distance. Such a phase knife is
no longer producing the Hilbert transform, and instead
of (2) one can obtain

Auu(x) = A () @PY 2RI
™
=e"inxﬁx[Ain(x)eim] ) (7)

Thus, the Hilbert transform may be considered as a
particular case (when n=0) of transform (7). We
chose the filter displacement & in such a way that the
Airy disc lied wholly within quadrant I of the phase-
shifting plate. Then the zero component is no longer
suppressed by the filter edge and interferes with the
other spectral components. The Neumann series
approach allows us to obtain the transfer function for
Ko> [}

L (%) =Toue+ Isusin (ko) + .., (8)

where uniform intensity and amplitude of intensity
modulation are

L =J3(co) +2{3(co) +3(co) +H3(co) + ...}
Iﬁ:=458“(77)-,0(co)]1(c0) . (9)

Note that the last expression is an exact one and its
approximation for ¢, << 1 is the following:

Iﬁtziz(:()- (10)

The essential difference between (8), (9) and (4),
(5) is the presence of output intensity modulation at
the same frequency as in the input phase, and there is
a quarter-period shift between functions ¢;,(x) and
I,,.(x). Photographs of the beam central part presented
in Fig. 4 illustrate this difference between a “‘classical”
phase knife (b) and a displaced one (c).

Since for x, < | 7| there is no phase shift between
‘“+ K, and ‘‘— K,  Fourier spectrum components
then no visualization of phase modulation with spatial
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Fig. 4. The experimental photographs of 1D sinusoidal phase grating
processing: (a) input slide, (b) transform by centered phase knife
(the Hilbert transform), (c) transform by displaced phase knife.

frequency k, < | 17| can be observed. Thus, by moving
the phase knife across the Fourier plane one can choose
the threshold visualization frequency limiting the sen-
sitivity of the system to low order aberrations.

Experimental data of the transfer function measure-
ments in comparison with theoretical plots are shown
in Fig. 3 (plots 4, 5 and square dots). A monotonous
dependence is observed only for phase modulation
amplitude ¢, < 1.1; for ¢, > 2.4 the inversion of contrast
takes place. A good accordance between theoretical
results and experimental data exists, showing the poten-
tial use of such an experimental technique for quanti-
tative measurements. On the other hand, it means that
the investigated phase knife may be adequately
accounted in the mathematical model of the feedback
system, which requires a knowledge of the transfer
function of feedback loop [9].

5. An optical implementation of logical XOR
operation

A general investigation of 2D phase knife (area 2 in
Fig. 1b) seems to be rather difficult due to its anisot-
ropy. An analysis of an output pattern is especially
complicated in the case when some spectral compo-
nents of the phase object are located at the filter edge.
Also it is difficult, owing to technological problems, to
obtain a real phase knife (Fig. 1c) fitting precisely an
“‘ideal’’ one in its central part.

However, if one satisfies the condition (1) an inter-
esting effect is observed, when operating with a phase
object (Fig. Sa) with a cross-like spatial spectrum ( Fig.
5b). The orthogonal components appear in a different
regions of the filter and consequently after passing
through it become anti-phase. This is responsible for
some features of the output intensity pattern, presented
in Fig. 5: (¢) numeric computation, (d) experimental
photo. The regions corresponding to bright lines cross-
ings in Fig. 5a are dark in the output intensity pattern.
Thus, 2D phase knife may be considered as a device
producing an optical implementation of ‘‘exclusiveor’’
logical operation between two barcode-like orthogonal
patterns.
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Fig. 5. “‘Exclusive or’’ operation by means of 2D centered phase knife: (a) input phase object, (b) its power spectrum. (c, d) output intensity

patterns: numerical simulation and experiment, respectively.

6. Conclusions

We suggested and investigated theoretically and
experimentally the operating regime of 1D phase knife
when it is transversally displaced from the center of the
Fourier-plane. The main observed features of image-
filtering optical system involving such a device are the
following:

(i) high sensitivity and high contrast of phase visu-
alization;

(ii) appearance of the first harmonic shifted by quar-
ter-period in output intensity spectrum,

(1ii) controllable edge frequency for phase visualiza-
tion;
(iv) little sensitivity to tilts of the beam and vibrations.
All above-mentioned features indicate that displaced
phase knife seems to be useful as an element of nonlin-
ear optical system with spatially distributed feedback.
It may also be used for *‘pure’’ image processing appli-
cations: atechnique for implementation of logical XOR
between two binary-type orthogonal patterns is sug-
gested.
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